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Abstract: We investigate to what extent adaptive learning affects asset prices in gen-

eral equilibrium models with production sector. We introduce the adaptive learning

assumption into the stock price equation only and assume that agents learn on the next

period stock price. We also propose a novel, linear version of the loglinear lognormal

stock price formula. Using the standard growth model with habit formation and convex

investment costs, we show that constant gain adaptive learning significantly increases

the equity premium as well as excess returns predictability and therefore helps to match

the basic macro-financial stylized facts. These results are primarily driven by learning

on the long-run mean level of stock prices. However, extending the learning scheme to

macroeconomic state variables partially offset these gains.

Keywords: adaptive learning, asset pricing, loglinear lognormal approximation, equity

premium, excess returns predictability
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1 Introduction

Adaptive learning mechanisms are proposed as an explanation for some important asset

pricing facts like high equity premium, excess volatility of stock returns, momentum or

excess returns predictability. However, usually simple endowment economy models are

employed to assess quantitatively to what extent the adaptive learning schemes are able

to explain the mentioned effects. On the other hand, the existing results that accounts

for the production sector (Carceles-Poveda and Giannitsarou, 2008) are based on the

simplest stochastic growth model. Unfortunately, because the asset price implications of

the rational expectations version of this model are in sharp contrast to empirical data,

introducing adaptive learning mechanism cannot solely resolve all the problems. In this

paper, we embed the adaptive learning scheme into more comprehensive models that

are better suited for explaining asset price phenomena. We show that adaptive learning

significantly amplifies the effects generated by other mechanisms which considerably

facilitate matching various stylized facts of asset price data.

In the baseline version of our study, we use the model proposed by Jermann (1998).

It extends the standard stochastic growth model to account for consumption habits in

the utility function and convex investment costs. The model in the rational expectations

version is able to generate high equity premium and match the basic characteristics of

macroeconomic variables. However, it fails to explain excess returns predictability. For

the robustness check purposes, we also consider the standard stochastic growth model

as well as the slow-moving habits model proposed by Jaccard (2014). The latter model

can be viewed as a generalization of the Jermann model that allows for the long-memory

habit formation process.

The important contribution of the paper is a new formula for approximating stock

price dynamics —which is a linearized version of the loglinear lognormal approximate

equation proposed by Jermann (1998). To derive it, we first loglinearize macroeconomic

part of a model. Then, we employ the loglinear lognormal formula for the one-period

risk free rate as well as the stock price. Finally, we linearize the formula for the stock

price around its risk-adjusted mean. We show that stock price characteristics obtained

with the proposed method are usually very close to their counterparts from the third

order perturbation approximation. With the linear law of motion for stock prices, we
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are able to use the standard linear learning rules. Moreover, we can disentangle the

effects of learning on the mean level of stock prices, their dynamics with respect to the

state variables and the price of risk. There is also consistency between the functional

forms of all the components of the stock price equation — the pricing kernel, dividends

and stock prices.

The analysis of quantitative consequences of replacing the rational expectations hy-

pothesis with the adaptive learning assumption for asset prices in production economies

is important at least for two reasons. First, because under adaptive learning there could

be significant differences between asset price properties of models with and without the

production sector. They can mainly stem from the differences in amount and proper-

ties of information that agents can utilize during the learning process. In endowment

economies, agents are usually assumed to use only the exogenous dividend process as

the explanatory variable whereas in more realistic models with the production sectors

they can utilize the whole set of endogenously determined state variables. Moreover,

in production economies, we can extend the learning assumption to the macroeconomic

state variables, which can also seriously affect implied asset price characteristics of a

model and, as shown in our study, partially offset the impact of stock price learning.

The second argument comes from the fact that implied asset price moments are used

to examine reliability of macroeconomic models (see Cochrane 2007, p. 242; Fernández-

Villaverde 2009, p. 42). The most famous example of such attitude is the equity premium

puzzle presented by Mehra and Prescott (1985). According to the macro-finance litera-

ture, asset prices and macroeconomic variables are generally driven by the same factors.

From this point of view, the spectacular fail of the workhorse stochastic growth model in

generating any significant equity premium puts serious doubts on its ability to explain

basic macroeconomic stylized facts correctly.

Our work is closely related to the study of Carceles-Poveda and Giannitsarou (2008)

who analyze to what extent adaptive learning can explain various asset pricing facts

in the simple stochastic growth model. They find that, in absolute terms, introducing

the adaptive learning mechanism results in minor changes in the asset pricing proper-

ties of the model compared to its rational expectations version. We conduct similar

analysis but our work differs in few important points. First, as already mentioned, we
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work with the richer model proposed by Jermann. Furthermore, Carceles-Poveda and

Giannitsarou (2008) assume that agents correctly know the mean stock price and learn

only on deviations from the steady state. We allow agents to learn also on the long-run

mean of stock price and show that it generates significant asset price effects in their

model. And finally, agents in their setup learn simultaneously on both, stock prices

and macroeconomic variables, while we disentangle these two effects and study them

separately.

This paper can also be seen as an extension of the study conducted by Adam et al.

(2012) to the production economies. They assume that agents learn on the next period’s

stock price using the constant gain recursive least square scheme. In the endowment

economy framework, this assumption is able to deliver sizable equity premium, momen-

tum and excess returns predictability. We confirm these findings considering exactly

the same type of learning while working with the more realistic economies with the

production sector.

There are also many other papers that study asset price implications of the adap-

tive learning models. Closely related to our study is the paper by Bullard and Duffy

(2001) who employ a life-cycle model with capital accumulation to show that learning

on stock prices can explain excess volatility of stock prices. Similar results are reported

by Timmermann (1993, 1996). These early studies use simple partial equilibrium mod-

els with Bayesian learning on the dividend process. Brennan and Xia (2001), Cogley

and Sargent (2008) and Cecchetti et al. (2000), among others, extend the framework to

pure exchange general equilibrium models. They document that Bayesian learning on

the endowment process generates plausible level of the equity premium. Comprehensive

study of the impact of Bayesian learning on various model’s parameters is also carried

out by Collin-Dufresne et al. (2013).

Another important strand of the literature aims at explaining the asset price phe-

nomena with heterogeneous learning rules employed by agents. We should mentioned

here the seminal paper by Brock and Hommes (1998), as well as the works of Branch

and Evans (2010) and Lewis and Markiewicz (2009) to name but a few. Contrary to

the previous studies, the last paper solves the exchange rate disconnect puzzle using

misspecified learning schemes. In the same vein, the learning mechanism is proposed
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as the explanation of the forward premium puzzle (Chakraborty and Evans, 2008) and

housing price dynamics in the recent years (Gelain and Lansing, 2014).

Finally, our paper contributes to the literature on asset price approximation in

macroeconomic models. General algorithms for calculating the risk-adjusted linear ap-

proximations of DSGE models are developed by Malkhozov (2014) and Meyer-Gohde

(2014). Unfortunately, they are significantly more demanding computationally com-

pared to our closed form solution for asset prices. Higher order generalizations of the log-

linear lognormal approximation for bond prices are discussed in Andreasen and Żabczyk

(2015) among others.

The rest of the paper is organized as follows. First, we introduce our linear stock price

approximation method. Then, we present the adaptive learning mechanism employed

in the paper. Section four contains description of the models. Finally, in the last two

sections, we present results of the simulation studies for the baseline model and a few

robustness check exercises.

2 Linear approximation of the stock price equation

Because it is much easier to study learning algorithms within a linear setup, we need

a risk-adjusted linear law of motion for stock prices. Our approximation procedure con-

sists of two steps. First, we employ the lognormal approximation, similarly to Jermann

(1998). Then, the resulted formula is linearized around the risk-adjusted mean. As a

result, we get a difference functional equation for stock prices with a linear solution.

Let Pt be the stock price in period t, Mt denotes the one-period-ahead stochastic

discount factor, Dt stands for the dividend and E∗t is the conditional expectation (not

necessarily mathematical) operator. Stock price dynamics is described by the well-known

equation:

Pt = E∗t (Mt+1Pt+1) + E∗t (Mt+1Dt+1). (1)

Relationship (1) can also be approximately written as follows:

pt = log
[
exp

(
E∗t (mt+1 + pt+1) + 0.5D2∗

t (mt+1 + pt+1)
)

+

+ exp
(
E∗t (mt+1 + dt+1) + 0.5D2∗

t (mt+1 + dt+1)
)]
,

(2)
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where small letters denote log variables and D2∗
t represents the conditional variance oper-

ator. Equation (2) is exact provided Mt+1, Dt+1 and Pt+1 are lognormally distributed.1

Because dynamics of Mt+1 and Dt+1 is endogenously determined by the macroeco-

nomic part of the studied model these variables are indeed conditionally lognormal as

long as we work with the loglinearized version of the macroeconomic model with the

following state-space representation:

xt = x̄+Mxŝt−1 +Wxεt, ŝt = Mŝt−1 +Wεt, εt ∼ N(0,Σ), (3)

where xt represents logMt or logDt, ŝt denotes vector of state variables expressed as

log-deviations from a steady state, εt is vector of stochastic shocks and Mx, Wx, M

and W are matrices that govern dynamics of the system. This property, coupled with

the discounted-dividend version of the stock price equation, was exploited by Jermann

(1998) in his loglinear lognormal approximation for asset prices.

However, lognormality does not hold for Pt+1, even if it is defined by (2) with

lognormal Mt+1 and Dt+1. Therefore, we further simplify the stock price formula using

linear approximations for exponential and logarithmic functions. As a result, we get the

following decomposition:2

pt = log (A+B) +
A

A+B
(E∗t (mt+1 + pt+1)− E∗(mt+1 + pt+1)) +

+
B

A+B
(E∗t (mt+1 + dt+1)− E∗(mt+1 + dt+1)) ,

(4)

where:

A = exp[E∗(mt+1 + pt+1) + 0.5D2∗
t (mt+1 + pt+1)],

B = exp[E∗(mt+1 + dt+1) + 0.5D2∗
t (mt+1 + dt+1)].

1We use the fact that if x ∼ N(µ, σ), then E(exp(x)) = exp(µ+ 0.5σ2).
2To obtain this formula, the following approximate relationship is applied:

ln (exp(x) + exp(y)) ≈ ln (X0 + Y0) +
X0

X0 + Y0
(x− x0) +

Y0

X0 + Y0
(y − y0)

where X0 = exp(x0) and Y = exp(y0), taking A and B as the expansion points. For details, see the
technical appendix.
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This formula has a very intuitive form. The term log(A + B) represents the risk-

adjusted long-run mean of stock prices, whereas the other two expressions can be viewed

as the expected deviations of the discounted next-period stock price and dividend, re-

spectively, from their long-run means.

In the rest of the paper, we assume that agents use formula (4) for pricing stock in

both, rational expectations and adaptive learning, versions of the models. In the tech-

nical appendix, we show that assuming linear law of motion for the stochastic discount

factor and dividends as in (3), actual dynamics of stock prices under rational expec-

tations has the linear state space form similar to those for mt and dt. Further in the

paper, we check the accuracy of the stock price formula. We show that it gives similar

results to the third order perturbation method for the analyzed models.

In our study, we also need to calculate prices of a risk-free bond Pf,t. We do this

using the loglinear lognormal approximation and obtain the following result:

pf,t = logEtMt+1 = m̄+WmΣW ′m +MmMŝt−1 +MmWεt. (5)

Because the formula is already linear, there is no need to approximate it further.

3 Adaptive learning with the linear stock price for-

mula

Equation (4) describes the relationship between the actual law of motion (ALM) of the

current period stock price (l.h.s.) and its perceived law of motion (PLM) represented

by the expectations on the next period stock price on the r.h.s. To be more concrete,

substituting out mt+1 and dt+1 with their linear law of motions (3) and pt+1 with the

perceived law of motion of the form:

pt+1 = p̄∗ +M∗p ŝt +W ∗p εt+1
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we get the following mapping from the PLM to the ALM coefficients:

T


p̄

Mp

Wp

 =


ln (A+B)(

Mm + A
A+BM

∗
p + B

A+BMd

)
M(

Mm + A
A+BM

∗
p + B

A+BMd

)
W

 (6)

A = exp
[
m̄+ p̄∗ + 0.5(Wm +W ∗p )Σ(Wm +W ∗p )′

]
,

B = exp
[
m̄+ d̄+ 0.5(Wm +Wd)Σ(Wm +Wd)

′] .
Under rational expectations, the coefficients of the PLM coincide exactly with the ALM

ones: p̄RE = p̄∗, MRE
p = M∗p , WRE

p = W ∗p . Therefore, they can be defined as a fixed

point of the mapping (6).

In the adaptive learning case, agents do not know the values of p̄∗, M∗p and W ∗p

and try to estimate them using observed values of pt and ŝt. We assume that they use

correctly specified model for the PLM:

pt = p̄AL +MAL
p ŝt−1 +WAL

p εt. (7)

In the baseline version of the study, agents learn only on p̄AL and MAL
p . We treat the

standard deviation of the stochastic shock as known and set WAL
p = WRE

p . Later, we

release this assumption and allow for learning on WAL
p but it turns out that it has a

negligible impact on stock prices.

As far as learning algorithms are concerned, we use the standard recursive least

squares constant gain algorithm. It is a weighted version of the least squares procedure

with exponentially declining weights for older observations. If φt =
[
p̄AL MAL

p

]′
de-

notes vector of the estimated parameters in period t and Rt is covariance matrix of the

estimates, then the algorithm can be described by the following recursion:

Rt = Rt−1 + g
(
xt−1x

′
t−1 −Rt−1

)
, (8)

φt = φt−1 + gR−1t xt−1
(
pt − x′t−1φt−1

)
, (9)

where xt = [1 ŝt]
′

represents vector of the observed explanatory variables in the regres-

sion (7) whereas the gain parameter g determines the decay rate of the weights for older
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observations. Higher g puts more weight on the most recent observations in the learning

process. As a consequence, the estimates φt fluctuate permanently around some mean

levels instead of converging pointwise as in the decreasing gain schemes. We believe that

this captures the permanent nature of learning of rapidly changing economic processes.

To initialize the procedure, we first simulate the rational expectations version of the

model for 200 periods and use the simulated data to calculate φ0 and R0 using ordinary

least squares formulas.

If we assume that agents learn also on the standard deviation of the stochastic shock,

we apply exactly the same procedure for estimating p̄ and Mp. Then, we calculate Wp

as square root of weighted average of the squared residuals from the regression. In other

words, we treat εt like an error term in the standard linear regression. Obviously, such

approach can be applied only to a model with one stochastic shock. With multiple

shocks, the problem is more complicated due to the identification issue.

Under constant gain learning, it is possible that the adaptive learning coefficients

deviate very far from their rational expectations counterparts. To exclude such extreme

situations, a projection facility is employed. Whenever the difference in stock prices

under adaptive learning and rational expectations exceeds some prespecified level, we

proportionally change all the adaptive learning coefficients towards the rational expec-

tations values by a fraction of 0.5. To be more precise, if:

pALt − pREt
pREt

> 1 or
pALt − pREt

pREt
< −0.5,

then:

φt = φt−1 − 0.5
(
φt−1 − φRE

)
,

where φRE denotes the rational expectations values of φ.

4 Models for state variables dynamics

In the baseline version of the study, we use the model proposed by Jermann (1998) to

describe dynamics of the state variables. This is a popular extension of the standard

stochastic growth model with habits in the utility function and convex investment costs.
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These two features are sufficient to generate reasonable equity premium. Below, we

describe the basic version of the model.

4.1 Baseline model

The representative household is characterized by the constant relative risk aversion

utility function with internal habits:

u(Ct, Ct−1) =


(Ct − χcCt−1)1−ν − 1

1− ν
for ν 6= 1,

ln(Ct − χcCt−1) for ν = 1,

(10)

where Ct denotes consumption, ν is a curvature parameter and χc determines habit

strength. Every period, the household maximizes its lifetime utility subject to the series

of budget constrains of the form:

Ct = Dt +Wt, (11)

where Dt denotes the dividends paid by the representative firm to the household and

Wt represents the wage.

The firm combines capital Ct with labour Lt to produce output Yt according to the

constant return-to-scale technology:

Yt = ZtK
α
t (AtLt)

1−α, (12)

where Zt is the stochastic productivity shock, At = γAt−1 represents the labor-augmenting

technical progress with the growth rate γ. Dynamics of the shock is described by the

standard autoregression model:

logZt = ρz logZt−1 + σzεt, ε ∼ N(0, 1). (13)

Capital depreciates at a constant rate δ and is increased by investment It. As a result,

the law of motion for capital is given by:

Kt =

[
1− δ + Φ

(
It
Kt

)]
Kt−1, (14)
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where function Φ(·) represents the convex investment costs:

Φ

(
It
Kt

)
=

(γ − 1 + δ)1/ξ

1− 1/ξ

(
It
Kt

)1−1/ξ

+
γ − 1 + δ

1− ξ
. (15)

The parameter ξ governs the function’s convexity. Higher values of ξ mean lower invest-

ment costs. In the limit, we have: Φ
(
It
Kt

)
= It

Kt
as ξ →∞.

Because of the technical progress, the variables need to be stationarized by At.
3 The

stationarized variables are denoted with tildes. Summing up, the model consists of the

following equations:

Qt = Et

Mt+1

αZt+1

(
K̃t+1

γ

)α−1
− γĨt+1

K̃t+1

+Qt+1

[
1− δ + Φ

(
γĨt+1

K̃t+1

)] , (16)

γKt =

[
1− δ + Φ

(
γIt
Kt

)]
Kt−1, (17)

Mt =
β̃

γ

MUt
MUt−1

(18)

MUt =

(
C̃t −

χc
γ
C̃t−1

)−ν
− χc

β̃

γ
Et

[(
C̃t+1 −

χc
γ
C̃t

)−ν]
, (19)

Qt = (γ − 1 + δ)−1/ξ

(
γĨt

K̃t

)1/ξ

, (20)

Ỹt = Zt

(
K̃t

γ

)α
, (21)

Ỹt = C̃t + Ĩt, (22)

D̃t = αỸt − Ĩt, (23)

Zt = ρzZt−1 + σzεt. (24)

Qt is the Lagrange multiplier for the firm’s optimization problem. It can be interpreted

as Tobin’s marginal q, MUt denotes the household’s marginal utility from consumption

whereas β̃ is the discount coefficient in the stationarized version of the model. Because

labor does not enter the utility function it is normalized to 1.

3Capital is the exception here because in period t it is divided by At−1.
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Table 1: Parametrization of the models

α β̃ δ γ σ ρ ν ξ χc χh

Baseline model
0.36 0.99 0.025 1.005 0.01 0.99 5 0.23 0.82 —

No habits, no investment costs
0.36 0.99 0.025 1.005 0.01 0.99 5 +∞ 0 —

Slow-moving habits
0.36 0.991 0.025 1.007 0.01 0.99 1 0.24 — 0.85

4.2 Other models

For the robustness check, we also consider two modifications of the previously described

model: the standard stochastic growth model without habits (χc = 0) and investment

costs (ξ = +∞) as well as the slow-moving habits model proposed by Jaccard (2014).

In the latter model, the household values consumption relative to a habit level Ht, so

the utility function is given by:

u(Ct, Ht) =


(Ct −Ht)

1−ν − 1

1− ν
for ν 6= 1,

ln(Ct −Ht) for ν = 1,

(25)

where stationarized habit stock dynamics follows the moving average representation:

γH̃t = χhH̃t−1 + (1− χh)C̃t−1. (26)

4.3 Parametrizations

For the parametrization of the baseline model, we use the values taken from Jermann

(1998) where a period in the model corresponds to a quarter. We also utilize the same set

of parameters for the standard stochastic growth model without habits and investment

costs. As far as the slow-moving habit model is concerned, we follow Jaccard (2014).

The calibrations are summarized in table 1.
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4.4 Additional remarks

For every model, we find the loglinear solution of the form (3) and calculate the risk-

free rate using formula (5). We also calculate the stock price coefficients under rational

expectations as the fixed point of the mapping (6) as well as for the adaptive learning

scheme using the constant gain algorithm (8). For the accuracy check purposes, we also

solve the models with the third order perturbation method with variables in logs and

the standard asset pricing formulas.4 We use Dynare to find the solutions of the models.

5 Results

5.1 Results for the baseline model

The simulated moments for the baseline model under the different expectation schemes

are reported in table 2. In panel A, we have the moments of the financial variables.

The adaptive learning mechanism significantly increases the mean stock return which

rises from 2.28% per quarter to 2.66%. As a result, the equity premium also increases,

from 1.83% to 2.26%. At the same time, the stock price volatility grows only by 0.4

p.p. which is not much in relative terms. However, the volatility considerably exceeds

the level observed in the data. The magnitude of these effects strongly depends on the

learning coefficient g. For example, if g = 0.05, then the equity premium jumps to

3.17%. Adaptive learning also increases autocorrelation of the dividend-price ratio. In

the rational expectations version of the model, the autocorrelation coefficient equals 0.8,

whereas in the data it exceeds 0.98. Under the adaptive learning scheme, the coefficient

is about 0.93.

Panel B shows that the adaptive learning mechanism is also able to generate signifi-

cant amount of the equity premium predictability. Under rational expectations, median

R2
4 from the one-year-ahead predictive regression is about 0.008, whereas in the data

it is about 0.1. Moreover, coefficient b̂4 is statistically significant in less than 50% of

simulations. On the other hand, under the adaptive learning scheme, R2
4 rises to 0.03

and the fraction of the statistically significant predictive coefficients is close to 70%.

Because of the higher autocorrelation of the dividend-price series, the effect becomes

4The second-order solution is calculated for the slow-moving habits model because the third order
approximation is numerically unstable during simulations.
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Table 2: Results for the baseline model

Moment Data RE
RE AL AL AL AL

3rd ord. g = 0.03 g = 0.05 Wp learn no p̄ learn

A. Moments of the financial variables
E(R) 1.58 2.28 2.23 2.66 3.56 2.59 2.32
D(R) 6.30 12.89 12.63 13.19 16.20 13.05 12.62

corr(R) 0.38 -0.14 -0.14 -0.06 -0.02 -0.06 -0.09
E(R−Rf ) 1.39 1.83 1.77 2.26 3.17 2.22 1.93
D(R−Rf ) 6.29 12.17 11.92 12.73 16.06 12.63 12.07

corr(R−Rf ) 0.37 0.00 -0.01 0.08 0.10 0.09 0.07
E(DP ) 3.46 3.81 3.73 4.39 6.07 4.24 3.87
D(DP ) 1.43 0.84 0.82 2.00 3.91 1.92 1.12

corr(DP ) 0.986 0.80 0.80 0.93 0.93 0.93 0.87

B. Predictability of the equity premium

b̂4 0.051 0.020 0.020 0.045 0.082 0.043 0.030

sig b̂4 — 44.7 45.9 69.2 77.9 68.3 61.1
R2

1 0.041 0.002 0.002 0.006 0.016 0.006 0.003
R2

4 0.102 0.009 0.009 0.030 0.059 0.026 0.017
R2

16 0.268 0.023 0.022 0.095 0.158 0.091 0.057
D(EEP ) — 0.08 0.12 3.55 5.18 2.13 3.10

C. Volatility of the macro variables
D(∆Y ) 0.01 0.01 0.01 0.01

D(∆C)/D(∆Y ) 0.51 0.49 0.49 0.49
D(∆I)/D(∆Y ) 5.19 2.85 2.81 2.85

D. Projection facility
frac — — — 27.1 69.5 25.5 2.3

av. num. — — — 1.8 3.6 1.8 1.0

The table shows medians for 1000 simulation with 260 quarterly observations each. All results are for

quarterly data. In the second column, the empirical characteristics are reported based on the US data

from Robert Shiller’s website (stock returns, risk-free rate and dividends 1Q1948–4Q2012) and from

the textbook of DeJong and Dave (2011) (output, consumption and investment 1Q1948–1Q2010).

Panel B: Predictability of the equity premium examined by running regressions of the h-period-ahead

excess returns on the log dividend-price ratio:
∏h

i=1 EPt+i = b0+bh logDPt, where EPt = Rt−Rf,t−1,

R — stock return, Rf — risk-free rate, DPt = (Dt−3 +Dt−2 +Dt−1 +Dt)/Pt. The estimates of the

regression coefficient b4 for the one-year-ahead excess returns and the determination coefficients R2

for h = 1, 4, 16 quarters are reported together with the fraction of simulations with the statistically

significant estimates of b4 at the 5% significance level (sig b̂4); EEPt = EtRt+1 − Rf,t — expected

equity premium.

Panel C: Volatility of the macro variables is calculated for their quarterly growth rates denoted by ∆.

Panel D: frac – fraction of simulations where the projection facility was used; av. num. – average

number of periods in a simulation when the projection facility was used.
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even stronger as the regression horizon h increases. Furthermore, predictability rises

when the learning coefficient g grows. For example, R2
4 for the one-year-ahead excess

returns is now 0.059 and the fraction of the significant predictive coefficients reaches

almost 78%.

The last row of the panel B documents that the increase in the equity premium pre-

dictability under adaptive learning is associated with the substantial rise in the volatility

of the expected equity premium, which is virtually constant under rational expectations.

The variation of the expected excess returns is well in line with the seminal finding of

Fama and French (1989).

Finally, panel D documents that the projection facility is used in about 25% of

simulations, less than two times per simulation on average, for the adaptive learning

model with g = 0.03. Therefore, this mechanism could not seriously influence the

presented results, especially as medians are reported. Obviously, for the higher value of

g, the projection facility is called more often.

5.2 Predictability of the equity premium with longer time-series

The rise of the equity premium predictability under adaptive learning becomes even

more striking when longer time series are concerned. Table 3 contains the predictabil-

ity statistics for series with 1000 observations. Under rational expectations, R2
4 for

the predictive regression with the one-year-ahead excess returns equals only 0.002 and

the fraction of the statistically significant predictive coefficients is about 40%. Under

adaptive learning, R2
4 is about one order of magnitude higher and the fraction of the

significant coefficients exceeds 90%. The differences are even greater for the four-year-

ahead excess returns. For example, R2
16 rises from 0.5% to 8.4%. However, these results

partially comes from the rise in autocorrelation of the dividend-price ratio which exceeds

0.96 under the adaptive learning scheme and is considerably larger than for the series

with 260 observations.

5.3 Other specifications of the perceived law of motion

As a second exercise, we compare the results for the adaptive learning models with

different information sets. In the baseline scheme, we assume that the agents know the
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Table 3: Results for the baseline model with n = 1000 observations

Moment Data RE
AL

g = 0.03

A. Predictability of the equity premium

b̂4 0.051 0.009 0.050

sig b̂4 — 40.8 90.5
R2

1 0.041 0.001 0.006
R2

4 0.102 0.002 0.026
R2

16 0.268 0.005 0.084
D(EEP ) — 0.08 4.16

B. Projection facility
frac — — 70.7

av. num. — — 2.7

The table shows median results for 1000 simulation with 1000 quarterly observations each. All results

are for quarterly data. In the second column, the empirical characteristics are reported based on the

US data from Robert Shiller’s website (stock returns, risk-free rate and dividends 1Q1948–4Q2012) and

from the textbook of DeJong and Dave (2011) (output, consumption and investment 1Q1948–1Q2010).

Panel A: Predictability of the equity premium examined by running regressions of the h-period-ahead

excess returns on the log dividend-price ratio:
∏h

i=1 EPt+i = b0+bh logDPt, where EPt = Rt−Rf,t−1,

R — stock return, Rf — risk-free rate, DPt = (Dt−3 +Dt−2 +Dt−1 +Dt)/Pt. The estimates of the

regression coefficient b4 for the one-year-ahead excess returns and the determination coefficients R2

for h = 1, 4, 16 quarters are reported together with the fraction of simulations with the statistically

significant estimates of b4 at the 5% significance level (sig b̂4); EEPt = EtRt+1 − Rf,t — expected

equity premium.

Panel B: frac – fraction of simulations where the projection facility was used; av. num. – average

number of periods in a simulation when the projection facility was used.
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conditional standard deviation Wp of stock prices and estimate p̄ and Mp. Here, we

consider two other assumptions: first, that agents learn also on Wp, and second, that

they learn only on Mp (no p̄ learn). As far as the financial moments are concerned,

learning on Wp does not affect the results significantly. In fact, they are even slightly

closer to the rational expectations version compared to the baseline learning scheme. If

we turn to learning onMp only, the results are generally close to the rational expectations

ones. Therefore, the observed effects of adaptive learning can be attributed mainly to

learning on the mean stock price p̄.

However, when the equity premium predictability is concerned, learning on Mp plays

also a role. Compared with the rational expectations case, R2
4 rises to 0.017 and the

percentage of the significant predictive coefficients increases by 15 p.p.

5.4 Accuracy check

In this subsection, we examine accuracy of our approximate stock price formula by com-

paring the simulated characteristics of asset prices with their counterparts calculated for

the model approximated with the third order perturbation method. Generally, the dif-

ferences between the two approaches are tiny. For our solution method, the mean stock

return is only 0.05 p.p. higher than for the benchmark. The difference in volatility of

the stock returns is 0.26 p.p. Similar discrepancies are observed for the equity premium.

As far as predictability of the equity premium is concerned, the results for both method

are virtually the same. These results clearly show that our stock price approximation

method provides sufficient accuracy, at least for the analyzed model.

6 Robustness checks

6.1 Standard stochastic growth model

Table 4 contains the results for the standard stochastic growth model. If we look at the

baseline learning scheme, we can see that the adaptive learning mechanism also increases

the stock returns and the equity premium, but the effects in absolute terms are rather

tiny. For example, the equity premium rises from 0.02% to 0.07%. However, this is still

a considerable rise when relative changes are concerned. Similarly to the baseline model,
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the adaptive learning mechanism also increases the equity premium predictability. For

the one-year-ahead excess returns, the fraction of the statistically significant coefficients

grows from 78% to 86.3% and R2
4 rises from 0.064 to 0.101.

As far as the other information sets are concerned, we can notice that learning on the

conditional standard deviation Wp also does not change the results much. However, if

agents learn on Mp only then the results on the asset returns are similar to the rational

expectations case, but the characteristics describing the equity premium predictability

lay midway between the results for the rational expectations version and the baseline

adaptive learning case.

To summarize, the results confirm the findings for the Jermann model, that the

decisive impact on stock return moments has learning on the mean stock price p̄, but

contribution of unknown Mp is also important for the equity premium predictability.

However, one should be careful about magnitude of the discussed effects because they

may be in some part a byproduct of our stock price approximation. Unfortunately, we

observe some non-negligible differences between our solution method and the benchmark

one. Under the third order perturbation, the equity premium is virtually 0, whereas it is

0.02% for our method. And similarly, R2
4 from the one-year ahead predictive regression

is 0.039 under the benchmark and 0.064 for our approach.

6.2 Slow-moving habits model

The simulated moments of the slow-moving habits model are shown in table 5. The

general conclusions are similar to those for the both previously discussed models. The

adaptive learning mechanism increases the equity premium (from 1.1% to 1.4%) and its

volatility (from 9.95% to 10.85%). It also rises the equity premium predictability. For

the one-year-ahead excess returns, the fraction of the significant predictive coefficients

grows from 45.7% to 71.4% and R2
4 soars from 0.008 to 0.037. And again, learning on the

conditional standard deviation Wp does not change the results at all. Instead, learning

on the mean stock price p̄ explains the majority of the observed learning effects.
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Table 4: Results for the no habits, no investment costs model

Moment Data RE
RE AL AL AL

3rd ord. g = 0.06 Wp learn no p̄ learn

A. Moments of the financial variables
E(R) 1.58 1.46 1.44 1.52 1.53 1.46
D(R) 6.30 0.23 0.18 1.09 1.07 0.24

corr(R) 0.38 0.72 0.98 0.33 0.33 0.78
E(R−Rf ) 1.39 0.02 0.00 0.07 0.08 0.02
D(R−Rf ) 6.29 0.14 0.04 1.05 1.06 0.13

corr(R−Rf ) 0.37 0.02 0.01 0.31 0.31 0.15
E(DP ) 3.46 3.76 3.71 3.94 3.97 3.75
D(DP ) 1.43 0.39 0.39 0.69 0.69 0.38

corr(DP ) 0.986 0.998 0.998 0.997 0.997 0.998

B. Predictability of the equity premium

b̂4 0.051 0.001 0.000 0.007 0.007 0.000

sig b̂4 — 78.0 75.7 86.3 86.3 83.5
R2

1 0.041 0.017 0.010 0.039 0.038 0.026
R2

4 0.102 0.064 0.039 0.101 0.102 0.082
R2

16 0.268 0.222 0.131 0.261 0.276 0.254
D(EEP ) — 0.01 0.00 1.01 0.82 0.07

C. Volatility of the macro variables
D(∆Y ) 0.01 0.01 0.01 0.01

D(∆C)/D(∆Y ) 0.51 0.77 0.77 0.77
D(∆I)/D(∆Y ) 5.19 1.62 1.61 1.62

D. Projection facility
frac — — — 11.2 10.9 0.0

av. num. — — — 2.7 2.8 —

The table shows medians for 1000 simulation with 260 quarterly observations each. All results are for

quarterly data. In the second column, the empirical characteristics are reported based on the US data

from Robert Shiller’s website (stock returns, risk-free rate and dividends 1Q1948–4Q2012) and from

the textbook of DeJong and Dave (2011) (output, consumption and investment 1Q1948–1Q2010).

Panel B: Predictability of the equity premium examined by running regressions of the h-period-ahead

excess returns on the log dividend-price ratio:
∏h

i=1 EPt+i = b0+bh logDPt, where EPt = Rt−Rf,t−1,

R — stock return, Rf — risk-free rate, DPt = (Dt−3 +Dt−2 +Dt−1 +Dt)/Pt. The estimates of the

regression coefficient b4 for the one-year-ahead excess returns and the determination coefficients R2

for h = 1, 4, 16 quarters are reported together with the fraction of simulations with the statistically

significant estimates of b4 at the 5% significance level (sig b̂4); EEPt = EtRt+1 − Rf,t — expected

equity premium.

Panel C: Volatility of the macro variables is calculated for their quarterly growth rates denoted by ∆.

Panel D: frac – fraction of simulations where the projection facility was used; av. num. – average

number of periods in a simulation when the projection facility was used.
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Table 5: Results for the slow-moving habits model

Moment Data RE
RE AL AL AL

2nd ord. g = 0.03 Wp learn no p̄ learn

A. Moments of the financial variables
E(R) 1.58 2.17 2.11 2.40 2.36 2.18
D(R) 6.30 10.19 10.09 10.99 10.92 9.95

corr(R) 0.38 -0.02 -0.02 0.09 0.09 0.06
E(R−Rf ) 1.39 1.10 1.03 1.40 1.38 1.19
D(R−Rf ) 6.29 9.95 9.84 10.85 10.81 9.79

corr(R−Rf ) 0.37 -0.00 -0.00 0.11 0.12 0.09
E(DP ) 3.46 3.79 3.58 4.25 4.16 3.90
D(DP ) 1.43 1.34 1.31 2.47 2.39 1.60

corr(DP ) 0.986 0.945 0.944 0.971 0.971 0.962

B. Predictability of the equity premium

b̂4 0.051 0.011 0.013 0.043 0.043 0.024

sig b̂4 — 45.7 47.2 71.4 71.5 61.2
R2

1 0.041 0.002 0.003 0.010 0.009 0.004
R2

4 0.102 0.008 0.010 0.037 0.038 0.019
R2

16 0.268 0.026 0.030 0.139 0.139 0.064
D(EEP ) — 0.08 0.02 3.58 2.02 2.80

C. Volatility of the macro variables
D(∆Y ) 0.01 0.01 0.01

D(∆C)/D(∆Y ) 0.51 0.48 0.50
D(∆I)/D(∆Y ) 5.19 2.36 2.34

D. Projection facility
frac — — — 27.1 27.3 3.6

av. num. — — — 1.3 1.3 1.1

The table shows medians for 1000 simulation with 260 quarterly observations each. All results are for

quarterly data. In the second column, the empirical characteristics are reported based on the US data

from Robert Shiller’s website (stock returns, risk-free rate and dividends 1Q1948–4Q2012) and from

the textbook of DeJong and Dave (2011) (output, consumption and investment 1Q1948–1Q2010).

Panel B: Predictability of the equity premium examined by running regressions of the h-period-ahead

excess returns on the log dividend-price ratio:
∏h

i=1 EPt+i = b0+bh logDPt, where EPt = Rt−Rf,t−1,

R — stock return, Rf — risk-free rate, DPt = (Dt−3 +Dt−2 +Dt−1 +Dt)/Pt. The estimates of the

regression coefficient b4 for the one-year-ahead excess returns and the determination coefficients R2

for h = 1, 4, 16 quarters are reported together with the fraction of simulations with the statistically

significant estimates of b4 at the 5% significance level (sig b̂4); EEPt = EtRt+1 − Rf,t — expected

equity premium.

Panel C: Volatility of the macro variables is calculated for their quarterly growth rates denoted by ∆.

Panel D: frac – fraction of simulations where the projection facility was used; av. num. – average

number of periods in a simulation when the projection facility was used.
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6.3 State variables learning in the baseline model

In our previous considerations, we always assume that the agents hold rational expec-

tations for all variables but the stock price. Here, we reverse this assumption by letting

the agents learn on the macroeconomic state variables instead of stock prices. We carry

out the analysis using the setting proposed by Jermann (1998), for which the state

variables are capital, the technological shock and the previous-period consumption. Ob-

viously, the state variables learning mechanism affects dynamics of all other variables in

the model as well. We employ the same constant gain recursive least squares scheme,

although we set different values of the learning coefficient g. The details of the state

variables learning version of the model are given in the technical appendix.

Table 6 summarizes the results for two values of the learning coefficient: g = 0.015

and g = 0.025. As far as the returns are concerned, the mean stock return increases

from 2.28% to 2.53% for the lower value of g and to 3.13% for the higher one. However,

the risk-free rate rises too, from 0.44% to 1.01% and 0.96%, respectively. As a result,

the effect for the equity premium is ambiguous. For g = 0.015, it is lower than in the

rational expectations case, whereas for g = 0.025, it is slightly higher. The adaptive

learning assumption also leads to the increase in volatility of the variables, especially

the risk-free rate. It jumps from 4.11% to 8.41% and 11.03% respectively, which is far

from the stylized facts. This is also the case for the strongly negative autocorrelation of

the risk-free rate.

The results from panel B clearly show that replacing the rational expectations hy-

pothesis with the adaptive learning assumption has a negligible impact on the equity

premium predictability. In fact, under adaptive learning it is slightly smaller than under

rational expectations. The fraction of the statistically significant predictive coefficients

for the one-year-ahead excess returns drops from 45% to less than 35%. Similarly, R2
4

becomes slightly lower, which mainly results from the drop in the dividend-price auto-

correlation coefficient.

Finally, it should also be pointed out that the adaptive learning mechanism almost

does not influence the macroeconomic variables dynamics. The relative volatility of

consumption remains unchanged, whereas for investments it increases only by a small

margin, from 2.82 to 2.92 and 2.95, respectively.
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Table 6: Results for the baseline model with state variables learning

Moment Data RE
AL AL

g = 0.015 g = 0.025

A. Moments of the financial variables
E(R) 1.58 2.28 2.53 3.13
D(R) 6.30 12.89 14.72 18.51

corr(R) 0.38 -0.14 -0.23 -0.27
E(Rf ) 0.20 0.44 1.01 0.96
D(Rf ) 0.85 4.11 8.41 11.03

corr(Rf ) 0.33 0.68 0.22 0.14
E(R−Rf ) 1.39 1.83 1.41 2.02
D(R−Rf ) 6.29 12.17 11.60 14.37

corr(R−Rf ) 0.37 0.00 -0.00 -0.01
E(DP ) 3.46 3.81 3.81 3.90
D(DP ) 1.43 0.84 0.89 1.02

corr(DP ) 0.986 0.80 0.76 0.70

B. Predictability of the equity premium

b̂4 0.051 0.020 0.006 0.007

sig b̂4 — 44.7 38.0 34.8
R2

1 0.041 0.002 0.002 0.002
R2

4 0.102 0.009 0.007 0.006
R2

16 0.268 0.023 0.022 0.017
D(EEP ) — 0.08 10.54 14.51

C. Volatility of the macro variables
D(∆Y ) 0.01 0.01 0.01 0.01

D(∆C)/D(∆Y ) 0.51 0.49 0.49 0.49
D(∆I)/D(∆Y ) 5.19 2.85 2.92 2.97

D. Projection facility
frac — — 0.0 0.0

av. num. — — — —

The table shows medians for 1000 simulation with 260 quarterly observations each. All results are for

quarterly data. In the second column, the empirical characteristics are reported based on the US data

from Robert Shiller’s website (stock returns, risk-free rate and dividends 1Q1948–4Q2012) and from

the textbook of DeJong and Dave (2011) (output, consumption and investment 1Q1948–1Q2010).

Panel B: Predictability of the equity premium examined by running regressions of the h-period-ahead

excess returns on the log dividend-price ratio:
∏h

i=1 EPt+i = b0+bh logDPt, where EPt = Rt−Rf,t−1,

R — stock return, Rf — risk-free rate, DPt = (Dt−3 +Dt−2 +Dt−1 +Dt)/Pt. The estimates of the

regression coefficient b4 for the one-year-ahead excess returns and the determination coefficients R2

for h = 1, 4, 16 quarters are reported together with the fraction of simulations with the statistically

significant estimates of b4 at the 5% significance level (sig b̂4); EEPt = EtRt+1 − Rf,t — expected

equity premium.

Panel C: Volatility of the macro variables is calculated for their quarterly growth rates denoted by ∆.

Panel D: frac – fraction of simulations where the projection facility was used; av. num. – average

number of periods in a simulation when the projection facility was used.
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Summing up, the presented results prove that introducing the adaptive learning

scheme for the macroeconomic state variables results in the significant changes in the

asset price characteristics, especially for the risk-free rate. However, in most cases, it

worsens the model’s ability to match the basic stylized facts for asset prices partially

offsetting the impact of stock price learning.

7 Conclusion

We study the quantitative consequences of replacing the rational expectations assump-

tion with the self-referential adaptive learning scheme in a few general equilibrium mod-

els with the production sector focusing on the first and second moments of the stock

returns, the equity premium and its predictability. We introduce a novel, linearized

version of the loglinear-lognormal stock price formula which allows us to employ the

standard linear learning schemes.

The results basically confirm the findings of Carceles-Poveda and Giannitsarou (2008),

that in the standard stochastic growth model the adaptive learning can neither generate

the reasonable equity premium level nor explain the excess return predictability. How-

ever, in more comprehensive models, it can successfully amplify effects generated by

other mechanisms. In particular, in our baseline model proposed by Jermann (1998), it

significantly increases the stock returns, the equity premium as well as its predictability.

It also rises the volatility of the stock returns, although the effect is considerably smaller.

Because the adaptive learning mechanism can improve asset price implications of

a model, it allows a researcher to employ a less extreme parametrization to match the

asset price characteristics. This usually improves a model’s fit in other important areas.

For example, in the analysed Jermann model introducing adaptive learning allows to set

lower values of the habit strength or the investment cost parameters to match the equity

premium. As a result, volatility of the risk-free rate is also lower and closer to the data.

However, this might not be the case if one extends the adaptive learning assumption

to the macroeconomic state variables, which can seriously increase fluctuations of the

risk-free rate.
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