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Abstract 

In the paper we analyze finite sample properties of the conditional predictive ability test proposed by Giacomini 

and White [9]. The test is designed for comparison of the out-of-sample forecast accuracy of two competing 

models. We simulate various two-dimensional series of forecast errors and calculate the empirical power and 

size of the test in both conditional and unconditional version for few different sample lengths. We find that the 

test has very appealing properties as far as the forecast errors of the two models are highly correlated. Otherwise 

for moderate sample lengths it has high power only when the forecast errors differ significantly in terms of the 

unconditional standard deviation. 

 

Keywords: predictive ability tests, forecasting, mean square error 

 

JEL Classification: C53, C12 

AMS Classification: 62G10, 60G25 

 

1. Introduction 

Predictive ability tests are used for comparing ex post accuracy of series of forecasts 

generated by two competing models. In other words they are designed to answer the question 

whether the difference in forecast accuracy measured by some loss function observed in  

a sample can be attributed to a pure chance or it will likely occur also out of the sample. The 

first such test was proposed by Diebold and Mariano [8]. Now the Diebold-Mariano test and 

its few important modifications are commonly applied in literature for comparing model 

predictive abilities [see 6, 11]. 

 In the paper we analyze the power and the size of the Conditional Predictive Ability (CPA) 

test which is an important generalization of the Diebold-Mariano test. We utilize the Monte 

Carlo approach and generate realizations of few two-dimensional stochastic processes 

representing forecast errors from two models that differ in terms of mean square errors. Then 

we count the number of cases where the hypothesis of equal predictive abilities was rejected. 

In the paper we focus on short series of errors since this is usually the case when one works 

with Polish data. The finite sample properties of the CPA test were examined only scarcely by 

Giacomini and White [9]. The properties of some other predictive ability tests were analyzed 

by Clark [3], Clark, McCracken [5] and Busetti, Marcucci [2] to name a few. 
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 The paper is organized as follow. In the first part we introduce the Diebold-Mariano and 

Giacomini-White predictive ability tests. Then we describe the simulation exercises. Finally 

we present the results. 

 

2. Methodology - predictive ability tests 

Let )(ˆ
1βτ+tY  and )(ˆ

2βτ+tY  denote forecasts for the horizon t + τ generated in period t = 1, 2, 

…, n from two models represented by parameter vectors 1β  and 2β . Moreover let mti,β̂  

stands for parameter estimates based on a sample of length mt. Forecasts accuracy is measured 

by a loss function )ˆ,( τττ +++ ttt YYL . By ))ˆ(ˆ,())ˆ(ˆ,( ,2,1, mttttmttttmtt YYLYYLL ββ τττττττ +++++++ −=∆  

we denote a difference between forecast loss functions for two models that parameters are 

estimated on a sample with mt observations. The test proposed by Diebold and Mariano [8] 

has the null hypothesis of the form: 

 ...,2,1,0)(: ,0 ==∆ + tLEH mtt τ , (1) 

 

and its alternative is: 

 ...,2,1,0)(: ,1 =≠∆ + tLEH mtt τ . (2) 

 

E stands for expectation operator. The null hypothesis states that on average there are no 

differences between predictive abilities of two models measured by a loss function. It should 

be noted that the hypothesis refers to the estimates mt,1β̂  and mt,2β̂  but not to the true values 

1β  and 2β . Therefore this is so called finite sample level prediction ability test [6]. The test 

made no assumptions about both estimation method and samples length.  

The test statistic has the standard zero-mean form: 
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ττ , )(ˆ ,τσ mtL∆  is an estimator of standard deviation of τ,mtL∆  and n 

is a number of ex post forecasts. Since the series of τ,mtL∆  may be autocorrelated the HAC-

type estimators (see Newey, West [10], Andrews [1]) of )(ˆ ,τσ mtL∆  are suggested. The 

limiting distribution of the test statistic is standard normal. 
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 Generalization of the DM test was proposed by Giacomini and White [9]. The null 

hypothesis in that test has the following form: 

 ...,2,1,0)|(: ,0 ==Ψ∆ + tLEH tmt τ , (4) 

 

where tΨ  represents a set of additional information available in period t. The null differs from 

its DM counterpart in two ways. First the expectation is conditional, so additional information 

can be taken into account for comparing forecasts. Therefore the test can answer the question 

whether differences in forecast ability depend on business cycle phase or other factors. And 

secondly it is assumed that models are estimated on samples of constant size m which need 

not be the same for both models. This assumption excludes models estimated on expanding 

window samples.  

 The test statistic has also the standard multivariate zero-mean form: 

 nmZnmq ZZn ,
1

,
2 ˆ −Ω′=χ , (5) 

 

where [ ]nmqnmnmnm ZZZZ ,,,,2,,1, ...,,,= , mttinmti LXZ ,,,,, τ+∆= , and tiX ,  denotes value of i-th 

instrumental variable in period t. Moreover ZΩ̂  denotes covariance estimator of matrix nmZ , . 

 If the horizon 2>τ  the authors suggest using HAC estimators. Giacomini and White [9] 

showed that under some mild assumptions on data used for estimating the models the test 

statistic converges asymptotically to 2χ  distribution with q degrees of freedom. Therefore the 

test is right-sided. If there is no additional information the test statistic collapses to (3). In our 

analysis we used both unconditional and conditional version of the test. 

 We should also mention that there is another approach to testing predictive abilities based 

on a population level view. In this approach the hypotheses refer to the true values of 

parameters 1β  and 2β , which generally makes the testing procedure significantly more 

complicated. Such tests are considered for example by West [12] and Clark and McCracken 

[4, 7] among others. 

 

3. Simulation study 

The properties of the test were examined using simulated series of forecast errors from two 

models. We considered several data generating processes. In every variant we generated two 

series that differ in terms of unconditional standard deviation. The series consist of 
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n = 30, 60, 90 and 120 observations. Below we describe the data generating processes that we 

worked with. 

• P1a: ttu 11 ε= , ttu 222 εσ= , )1,0(~, 21 Ntt εε , 3,,05.1,12 K=σ ; 

• P1b: ttt uu 1
2
122

2

12
1 1 ερ

σ
ρ

−+= , ttu 222 εσ= , )1,0(~, 21 Ntt εε , 95.012 =ρ ; 

• P2a: ttu 11 ε= , ttt uu 2122 εγ += − , )1,0(~, 21 Ntt εε , 9.0,,05.0,0 K=γ ; 

• P2b: ttt uu 1
2
122

2
121 11 εργρ −+−= , ttt uu 2122 εγ += − , )1,0(~, 21 Ntt εε , 

9.0,,05.0,0 K=γ , 95.012 =ρ . 

 As far as W1 processes are concerned both series are normal and serially uncorrelated. In 

version W1a the series are mutually independent whereas the version W1b assumes that the 

correlation coefficient between the series equals 0.95. The first process has always unitary 

unconditional standard deviation. The standard deviation of the second one takes values 

ranging from 1 to 3. The processes W2 differ from W1 by the fact that the second series has 

constant unitary conditional variance but are increasingly serially correlated.  

 For estimating the covariance matrices in the test the HAC estimators with Bartlett kernel 

were used, where the automatic procedure proposed by Andrews [1] were utilized for 

calculating the optimal window lag length. In every variant 10000 series were simulated for 

calculating the power and 100000 for calculating the size of the tests. 

 

4. Results 

The results of the power analysis were presented for two nominal significance levels α = 0.1 

and α = 0.01. Figure 1 depictures relationship between the power of the unconditional version 

of the test and the unconditional standard deviation of the second variable s2 for the process 

P1a and two nominal significance levels. For α = 0.1 and longer samples n = 90 or n = 120 the 

rejection probability is close to 1 as far as the unconditional standard deviation of the second 

error process is about 50% higher than for the first one. The results change only slightly if one 

considers lower significance level α = 0.01. However if shorter samples are taken into account 

this difference needs to be significantly higher. For example if the error series have only 30 

observations then the test achieves high power if the standard deviation of the second model 

reaches about 100% (s2 = 2) of the first standard deviation for α = 0.1 and about 200% (s2 = 3) 

when α = 0.01. 

 The problem with the low power of the test does not occur when the two error series are 

strongly mutually dependent as it is presented on figure 2 for the process P1b. For the nominal 
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significance level α = 0.1 and longer samples the test achieves the high power just for s2 = 1.1. 

For n = 30 observations and = 1.25 the test properly rejects the null in almost all simulations 

if only s2 exceeds 1.25. If α = 0.01 these differences need to be about two times higher but 

they are still lower than for the uncorrelated series. We do not present the results for the 

conditional version of the test since for all discussed cases they are virtually the same. 

 

 

Fig. 1. Power of the unconditional test for the process P1a and nominal significance levels 
α = 0.1 (left axis) and α = 0.01 (right axis). 

 

 

Fig. 2. Power of the unconditional test for the process P1b and nominal significance levels 
α = 0.1 (left axis) and α = 0.01 (right axis). 

 

 We also analyzed the size of the test for the process P1a assuming that the second errors 

have also unitary variance. The results are presented in table 1. It can be easily seen that 

regardless of the correlation level between the two series the test has correct sizes which are 

close to the nominal significance levels. In all cases they exceed the nominal counterparts 

only slightly even for the shortest sample. We do not report size of the conditional version of 

the test since it is almost the same as in table 1. 

 The power of the unconditional version of the test for the process P2a is presented on 

figure 3. In that case the errors from one model are serially correlated. Similarly to the 

previous figures the x-axis depicts unconditional standard deviation of the serially correlated 

errors that now is determined by the autocorrelation coefficient. We see that the power of the 

test is now lower than in case of no serial correlation. If we consider the higher significance 
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level α = 0.1 the unconditional standard deviation s2 needs to be approximately doubled 

compared to uncorrelated case to guarantee the high power of the test. To be more concrete, 

for the short sample with 30 observations even for large autocorrelation coefficient ρ12 = 0.9 

that results in high unconditional standard deviation of more than 3.2 the rejection fraction is 

only about 70%. The results for α = 0.01 are more extreme. In that case the test is simply 

unable to reject the null frequently enough even for huge differences in unconditional 

standard deviations. All considered samples are too short for correct inference. 

 

 

ρ12 = 0  ρ12 = 0.95 

Sample length n  Sample length n 

30 60 90 120  30 60 90 120 

Significance 

level α 

0.1 0.117 0.108 0.105 0.103  0.117 0.109 0.107 0.106 

0.05 0.061 0.054 0.053 0.052  0.059 0.055 0.054 0.053 

0.01 0.013 0.011 0.011 0.011  0.013 0.011 0.011 0.010 

Table 1 Size of the unconditional version of the test for the processes P1a and P1b. 
 

 

Fig. 3. Power of the unconditional test for the process P2a and nominal significance levels 
α = 0.1 (left axis) and α = 0.01 (right axis). 

 

 

Fig. 4. Power of the conditional test for the process P2a and nominal significance levels 
α = 0.1 (left axis) and α = 0.01 (right axis). 
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 This is however not the case as far as the conditional version of the test is concerned with 

lagged values of the serially correlated process as additional information. This situation is 

illustrated on figure 4. Now the power steadily rises as the standard deviation grows, although 

the increase is very slow. For α = 0.1 the power of the conditional test is slightly lower than in 

its unconditional version. The problem almost completely disappears when the series are 

mutually correlated (process P2b). Then the power of the test is high even for small 

differences in unconditional standard deviations. We do not report exact results here but they 

are similar to that presented on figure 2. 

 

 

ρ12 = 0  ρ12 = 0.95 

Sample length n  Sample length n 

30 60 90 120  30 60 90 120 

Significance 

level α 

0.1 0.402 0.349 0.320 0.298  0.178 0.167 0.163 0.160 

0.05 0.314 0.272 0.246 0.228  0.106 0.099 0.096 0.094 

0.01 0.174 0.160 0.146 0.135  0.033 0.030 0.029 0.027 

Table 2 Size of the unconditional version of the test for the process P2a and nominal 
significance levels α = 0.1 and α = 0.01. 

 

 Finally we conduct the analysis of the size of the unconditional test for the serially 

correlated processes. The results are presented in table 2. The autocorrelation causes severe 

size distortions. If the series are mutually independent and the nominal level equals 0.1 the 

empirical size is usually above 0.3 and for α = 0.01 it is at least of one order of magnitude 

higher. The distortions for mutually correlated series are somewhat smaller. However the 

empirical size still exceeds its nominal level two- or threefold. 

 

5. Conclusions 

The presented results lead to a few conclusions. First the power of the tests is significantly 

higher when one compares forecasts that are highly mutually correlated. For normally 

distributed and serially independent errors the test correctly rejects the null when forecast 

standard deviation from one model exceeds the second one by 10% provided a sample has at 

least 100 observations. For short samples the test achieves high power for differences of order 

25%. The properties of the conditional test are very similar in that case. If the error series are 

mutually independent the power is considerably lower. The properties of the test worsen 

significantly when one of the error series is serially correlated. This can result in severe size 
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distortions as well as power loss. The conditional version of the test behaves slightly better 

but still suffers from the mentioned problems.  

 To sum up we can recommend using the CPA test for comparison of short samples 

forecasts at 0.1 significance level provided the error series do not exhibit strong serial 

dependence. It is also highly desirable to compare forecasts that are mutually dependent. One 

should be careful using the test in case of serially correlated series. The conditional version of 

the test should then be applied. 
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